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Abstract-The authors have recently proposed a continuum model for domain switching in poly­
crystalline ferroelectric ceramics in which each crystallite is modeled as a mixture of various domains
characterized by their mass fractions, and domain switching corresponds to changes of the mass
fractions of the corresponding domains. In order to explore the implications of this model, the
authors present the explicit solution to an idealized one-dimensional ferroelectric system. The
solution indicates that the orientation misalignment of crystallites results in a local electric field of
strong inhomogeneity. The local electric field does not necessarily vanish in the absence of an
externally applied electric field and its magnitude at certain locations can be substantially larger
than that of the externally applied electric field. With a postulated domain switching criterion, the
model produces the hysteretic response of the macroscopic polarization to the applied electric field
due to local domain switching. 'D 1998 Elsevier Science Ltd.

I. INTRODUCTION

Ferroelectric crystals have been increasingly used to design actuators (Cross, 1993) for
various applications, such as active control of large flexible space trusses (Crawley and de
Luis, 1978), structural acoustics (Cross, 1994; Kim et al. 1996) and helicopter rotary blades
(Samak and Chopra, 1993, 1994; Giurgiutiu et al. 1994). The major obstacle in these
applications is the so-called electric fatigue which refers to deterioration of material proper­
ties (Salaneck, 1972; Carl, 1975). A number ofexperimental observations (Jiang and Cross,
1993; Jiang et aI., 1994; Park and Sun, 1995; Freiman and White, 1995; White et al., 1996;
Hill et al., 1996; Lynch, 1996) indicate that fatigued specimens often contain microcracks,
i.e., cracks of length comparable to the grain size which is typically 5 pm in average. The
cause of microcracking is generally attributed to stress and electric field concentrations at
the grain level due to material inhomogeneity although the detailed mechanism is still under
investigation (Suo et aI., 1992; Cao and Evans, 1994; Jiang, 1994; Zhang and Jiang. 1995).
Development of continuum models remains a challenging task because of the evolving
microstructure and the polycrystalline nature of these materials.

The commonly-used ferroelectric materials in actuator applications are the poly­
crystalline oxide ceramics of barium titanate (BaTi03) and PZT (Pb[Zr, Ti]03)' Barium
titanate and PZT both have the perovskite cubic structure in the paraelectric phase. At
room temperature, barium titanate has a tetragonal structure. While PZT has a tetragonal
structure on the Ti-rich side and has a rhombohedral structure on the Zr-rich side except
on the extreme Zr-rich side where the solid solution exhibits no observable ferroelectric
effect. The commonly-used PZT is on the Ti-rich side near its morphotropic phase boundary
because of the strong electromechanical coupling effect. The tetragonal structure is polar
in the sense that the centers of positive and negative charges for each lattice unit are
spatially separated, forming a dipole ofelectric charges. Consequently, these crystals exhibit
spontaneous polarization. In a stable configuration, each crystallite is divided into a number
of macroscopic regions in which the polar directions differ from each other by either 180'
or approximately 90". The deviation from 90" is determined by the lattice parameters. These

t Author to whom correspondence should be addressed.
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regions are called the ferroelectric domains and correspondingly, the interfaces are referred
to as the 1800 or 90c domain walls, respectively.

The commercial barium titanate and PZT ceramics are produced as polycrystalline
solid solutions through the conventional steps of sintering of fine powders of oxide metals.
The resulting solid solutions do not exhibit observable electromechanical coupling effect
because the ferroelectric domains are so formed that the average polarization of each grain
is approximately zero. Application of an electric field can switch the polar direction of a
domain by either 1800 or approximately 900, called 1800 or 90° domain (polarization)
switching, respectively, and the resulting polar direction is closer to the direction of the
applied electric field. The ceramics exhibit the electromechanical coupling effect only after
the domains are reoriented by application of a strong DC field. This reorientation process
is the so-called poling process. Ferroelectric domains are initially formed when the ceramics
are cooled from high processing temperatures and they are altered during the subsequent
poling process, leading to a macroscopic polarization, called the remnant polarization.
Application of an electric field can change the remnant polarization, both its magnitude
and direction, resulting in a macroscopic displacement, or a force when the ceramic is
clamped. This provides the mechanism of electrically-controlled actuation (Cross, 1993).

Kim and Jiang (1996) proposed a continuum model to simulate the microcracking
effect on macroscopic properties of polycrystalline ferroelectric ceramics. Their predictions
on the microcracking-induced evolution of the electric field-polarization response and the
resulting reduction of the remnant polarization are in qualitative agreement with the
experimental observations. In their model, Kim and Jiang (1996) treat each grain as an
effective domain by taking the average of the polarization intensities of the domains within
the grain to be the effective polarization. Due to lack of a mechanism to determine the
magnitude of the effective polarization intensity, they had to assign it a value rather
arbitrarily in their numerical simulations. As a continuing effort to model domain switching
in polycrystalline ferroelectric ceramics, we (Huo and Jiang, 1996) have recently proposed
to model each grain as a body of mixture consisting of distinct types of domains which are
characterized by their mass fractions as internal variables. Consequently, the average
polarization of a grain is a linear function of the mass fractions and domain switching
corresponds to changes of mass fractions of the corresponding domains. Because of its
complications, any attempt to simulate a realistic system with this model would require a
massive amount of computational work. In order to explore the implications of this model,
we have studied an idealized one-dimensional system, and the detailed analysis is presented
in this article. In the next section, we present our idealization of a ferroelectric specimen to
a ferroelectric plate consisting of N layers of crystallites with distinct orientations. Neg­
lecting the edge effect, we assume that each of the variables varies only along the plate
thickness direction and this leads to a one-dimensional system. Thanks to the simple setting,
we have obtained the solution in an explicit form which allows us to study the implications
of our model on the inhomogeneous distribution of the local electric field. In the one­
dimensional framework, the law of mechanical equilibrium requires that the axial stress
remains constant spatially. This prevents us from studying the polycrystalline effect on
stress distributions, i.e., stress concentrations at the grain level. We thus focus the present
analysis on distributions of local electric field. We devote Section 3 to a study of the
implications of the second law of thermodynamics on this idealized system. We show that
equilibrium requires minimization of a potential energy which leads to the determination
of the mass fractions of distinct domains in all the crystallites. There are two groups of
minimizers, distinguished by whether or not some of the crystallites are saturated in
polarization. We then turn to study quasi-static processes in Section 4. As expected, there
is no hysteresis in the dielectric response to the applied electric field in any quasi-static
process in which only minimizers are accessible. Our previous analysis (Huo and Jiang,
1996), based on thermodynamics, indicates that the driving force for domain switching in
this model is the difference of the Gibbs free energies associated with the corresponding
domains. To model the hysteretic response of macroscopic polarization to applied electric
field due to domain switching within grains, we postulate that there exists a material
property, called the critical driving force and that domain switching takes place whenever
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the driving force exceeds this critical value. The resulting numerical results, presented in
Section 5, indicate that mismatch of polarization among crystallites results in an inhomo­
geneous electric field whose magnitude at certain locations can be substantially larger than
that ofexternally applied electric field, and that the internal electric field does not necessarily
vanish in the absence of externally applied electric field.

We note that ferroelectric domains are, from the kinematics point of view, analogous
to twin plates associated with martensitic phase transformations. Owing to the pioneering
work of Ericksen (1975), Knowles and Sternberg (1975), Abeyaratne (1980), James (1981)
and others, continuum modeling of solid-solid phase transitions has become a very active
area of research in mechanics and materials. The investigations in this area closely related
to the present work are the work of Ball and James (1987) on the fine phase mixtures in
martensitic phase transformations, the work of Abeyaratne and Knowles (1988) on the
kinetics of phase boundaries, and the recent work of James and Kinderlehrer (1993) on the
domain structures in ferromagnetic materials.

2. AN IDEALIZED ONE-DIMENSIONAL SYSTEM

Many specimen for fatigue test are of a plate-like geometry. The upper and lower
surfaces are electroded so that an electric field can be applied across its thickness. In order
to render a one-dimensional model, we consider such a plate being composed of N layers
of crystallites with thickness hn, n = 1,2, ... , N. Let the x-axis be along the thickness
direction with the nth layer occupying the interval [xm X n + d. The orientation of the nth
crystallite is characterized by the orientation tensor Rn • Let us consider the case that
the paraelectric-to-ferroelectric phase transformation corresponds to a cubic-to-tetragonal
transformation in the crystal lattice structure, and hence each of these crystallites consists
of six distinct types of domains whose polar directions are mutually orthogonal. Their
spontaneous polarization intensities admit the following representations:

p~(n) =psRnQ.E~, CJ. = 1,2, ... ,6; n = 1,2, ... ,N. (I)

Here, pS denotes the spontaneous polarization magnitude and E~ the unit vector along the
x-direction. Q., a = 1,2, ... ,6, are the six orthogonal tensors that form the point group of
the crystal cubic lattice. The matrix representations of these orthogonal tensors in the lattice
frame are given by

-I)O.

o
(2)

We define the macroscopic spontaneous polarization (Huo and Jiang, 1996) of the nth
crystallite as the following average:

6

p~(zn) = L z:p~(n), n = 1,2, ... , N,
:;(=}

(3)

where z:, a = 1,2, ... , 6, denote the mass fractions of the six distinct types of domains
within the nth crystallite and they satisfy the following constraints:

z: ~ 0, a = 1,2, ... ,6; and
6
",~n_11...J 4.:;( - ,

et.=]

n = 1,2, .. . ,N. (4)

Let us first consider an electro-mechanical static process. The Faraday's law requires that
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the electric field intensity e be curl-free within each of the crystallites, and hence there exists
a continuous and piecewise differentiable function ¢, called the electric voltage potential,
such that

e = - V¢ within every crystallite. (5)

We consider the case that the voltages at both the upper and the lower surfaces of the
specimen are specified, and this corresponds to the following boundary conditions

¢ = 0 at x = 0; ¢ = V at x = H, (6)

where H denotes the thickness of the plate and V the voltage drop, related to the applied
electric field ea through ea = - VI H. Neglecting the edge effect, we assume that the electrical
voltage potential depends only upon the coordinate x, and consequently, the electric field
is along the thickness direction. To render a one-dimensional problem, we assume, rather
arbitrarily, that the stress tensor has only one non-zero component, i.e., the normal stress
along the thickness. In the absence of body forces, equilibrium requires that the stress
remains constant throughout the specimen.t We take it as zero because usually no mech­
anical loads are applied in electric fatigue tests. In the absence of stresses, the macroscopic
polarization p is related to the macroscopic electric field intensity e through the following
constitutive relation

p = p~(zn)+cwn(zn)e, within the nth crystallite (7)

where the dielectric susceptibility tensor (Huo and Jiang, 1996) of the nth crystallite is given
as

6

OJIn(zn) = L z~RnQ,qYoQ;R;', n = 1,2, ... ,N.
a=1

(8)

Here, CWo stands for the dielectric susceptibility tensor of the single-domain crystal in the
tetragonal phase and its matrix representation in the lattice frame has the diagonal form

o

I'/a

o
o)o ,
I'/a

(9)

with I'/a and 1'/, being the dielectric susceptibility constants along the tetragonal a-axis and
the tetragonal c-axis, respectively. It is implied by (7) that the polarization intensity p varies
only with one coordinate, x, and so does the dielectric displacement d, defined as d = e + p.
Coulomb's law requires that the x-component of d, in the absence of free charges, remain
constant throughout the specimen, and we denote it by d. From the constitutive relation
(7), we obtain

(10)

where p~(zn) stands for the x-component of the macroscopic spontaneous polarization of
the nth crystallite and e the magnitude of the electric field intensity. The dielectric per­
mittivity along the thickness En(Zn) for the nth crystallite is related to the corresponding
dielectric susceptibility tensor cwn(zn) through En(Zn) = 1+ [cwn(zn)E~l' E~, with E~ being the
unit vector along the x direction. The modified constitutive relation (10) implies that the

t As pointed out by one of the reviewers. the one-dimensional setting has essentially simplified the poly­
crystalline body to an array of single crystal aggregates and it has prevented us from studying the mechanical
interactions among grains of distinct orientation.
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electric field e remains constant within each of the crystallites. We denote its value within
the nth crystallite by en and we turn now to determine its value within each of the crystallites.
Integrating eqn (5) with the boundary condition (6) yields

N

Ihnen = He".
n=1

(II)

This relation together with (10) leads to the electric field within each of the crystallites as
follows:

where

n = 1.2, ... , N, (12)

N

He" + I hmP;n/em
111=1

d = d({zn};;~ I' e,,) = N

I hm/em
111= 1

(13)

As indicated above, the dielectric displacement d depends on the mass fractions of distinct
domains of all the crystallites, and so does the electric field within every crystallite because
of the relations (12). In the next section, we turn to the determination of these mass
fractions.

3. IMPLICATlO'-JS OF THE DISSIPATION INEQUALITY

3.1. The dissipation inequality
In the current one-dimensional setting where stresses vanish identically and the absolute

temperature 0 remains constant, the second law of thermodynamics leads to the following
dissipation inequality (H uo and Jiang, 1996):

pOYn = - pg" - Pnen ? 0, n = 1,2, ... , N, (14)

where Yn stands for the entropy production of the nth crystallite, and p the mass density
assumed to be constant. The Gibbs free energy density 9n of the nth crystallite is defined by

n = 1,2, ... ,N, (15)

where the Gibbs free energy density 9'/3 associated with the fi-domain of the nth crystallite
is given (Huo and Jiang, 1996) as follows:

fi = I, 2, ... , 6, n = 1, 2, ... , N. (16)

Here, the constant.f~ denotes the Helmholtz free energy density associated with the fi­
domain, at the temperature 0 and in the absence of both stresses and electric fields. We
denote, respectively, by 1]'j; and pHn), the corresponding susceptibility coefficient along the
x direction and the x-component of the corresponding spontaneous polarization, i.e.

1]'j;=(@''j;E~)'E~, pfi(n)=po(RnQaE~)'E~, fi=I,2, .... 6, n=I.2.... ,N. (17)

Summing (14) over all the crystallites leads to the total entropy production
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(18)

where the potential energy Ge is defined as

(19)

In arriving at (18), we have used relation (11) and the fact that the dielectric displacement
d remains constant. The dissipation inequality (18) suggests that the potential energy
Ge({Zn}~~l; ea) should attain its minimum at equilibrium when the applied electric field
is kept constant. Noting that the mass fractions must satisfy the constraints (4), one should
minimize the functional

(20)

where Am are the Lagrangian multipliers.
The constraints in (4) confine all the minimizers of the potential energy Gi . ;ea) in the

super-cubic region [3£ == {{Zn}~=l; 0 ~ z~ ~ I} of the 6N-dimensional space. There are
two distinct cases: (i) a minimizer is an interior point of [3£ ; and (ii) a minimizer is on the
boundary of [3£. In the latter case, there is at least one crystalIite for which one of the mass
fractions is equal to I and the rest are all equal to zero, and we refer to it as a saturated
minimizer because it indicates that the crystallite has reached a state of saturation of
polarization. A minimizer within the interior of [3£ is called an interior minimizer. The
following two subsections are devoted to the discussion of these two distinct cases, respec­
tively.

3.2. Interior minimizers
At an interior minimizer, we should have from (20)

aGe
- - An = 0 "I. = 1, 2, ... ,6, n = 1, 2, ... , N.
oz~ ,

Differentiating (19) with respect to the mass fraction z~ and invoking (16) yield

(21)

(22)

Substituting (11) and (12) into the above and noting that the applied electric field ea is kept
constant, we obtain

aGe-a = hlJpg~, r:J. = 1,2, ... ,6, n = 1,2, ... , N.
z~

(23)

Therefore from (21), at an interior minimizer, the six types of domains within the same
crystallite must all have equal Gibbs free energy densities, i.e.

From (16) we have

g~ = g~ r:J., f3 = 1,2, ... ,6, n = 1,2, ... ,N. (24)
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p(g~-gp) = -~(tI~-tlp)e~-(p~(n)-pp(n))er" rt.,/3 = 1,2, ... ,6, n = 1,2, ... ,N.

1345

(25)

Since the polar directions of the six distinct types of domains within the same crystallite are
mutually orthogonal, there are always two types of domains whose polar directions are
opposite and whose spontaneous polarization intensities have non-zero x-components. For
such a pair of domain types, the x-components of their spontaneous polarization intensities
are equal in magnitude but of opposite signs, and their susceptibility coefficients along the
x-direction are equal, i.e.

(26)

where (i+(n) and (i-(n) are designated to such a domain pair for the nth crystallite. For the
convenience of later discussion, the (i + (n)-domain is identified as the type of domain with
the nth crystallite whose x-component of the spontaneous polarization is the largest.
Consequently, the (i-(n)-domain is the type of domain within the nth crystallite whose x­
component of the spontaneous polarization is the smallest. Recalling (3), the definition of
the macroscopic spontaneous polarization, one sees that p1+ (n) (n) and pi;- (n) (n) are, respec­
tively, the maximum and the minimum of the spontaneous polarization along the x­
direction for the nth crystallite. Letting (J = (i+(n) and /3 = (i-(n) in (25) and invoking
equalities (24) and (26), we conclude that the electric field vanishes identically within each
of the crystallites, i.e.

en = 0, n = 1,2, ... ,N. (27)

Hence, an interior minimizer can be attained only in the absence of applied electric field,
i.e., ea = 0. Correspondingly, from (7) and (12) we have

PIl(ZIl) = p~(ZIl) = d, n = 1,2, ... , N, (28)

i.e., the polarizations along the x-direction are the same for all the crystallites and they are
equal to the macroscopic dielectric displacement d which may not necessarily be zero
although the applied electric field has to be zero at interior minimizers. To determine the
possible values of d, we recall the designations of (i+(n) and (i-(n), i.e.

p1(1l)(n) ~p~(n) "';Phn)(n), rt. = 1,2,',6, n = 1,2, ... ,N. (29)

Multiplying (29) by z~ and then summing the resulting over all the six types of domains for
each of the crystallites yield

phll)(n) ~ d=p;;(ZIl) ~phll)(n), n = 1,2, ... ,N.

This further leads to

(30)

(31 )

where the number rno is designated to the crystallite whose maximal x-component of the
spontaneous polarization is the smallest among all the crystallites, i.e.
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(32)

3.3. Saturated minimizers
The above discussion indicates that there are no interior minimizers in the presence of

an applied electric field. In this case, the local electric field should no longer vanish ident­
ically. We first consider the case that the local electric field vanishes in all the crystallites
except one, the noth crystallite say, i.e.

en" i= 0 and e" = 0, for n i= no.

From (II) and (10) we obtain

Hea
ell" = hand Pn = P;, = d, for n i= no·

Jlo

(33)

(34)

For definiteness, we assume that ea is positive, and consequently ello is positive as well. The
relation (25) indicates that for a sufficiently small ea

(35)

In arriving the above, we have assumed that each crystallite has only one type of domains,
designated as the <5+ (n)-domains, whose x-component of spontaneous polarization is larger
than those of the other types of domains.t Minimization of the Gibbs energy for the noth
crystallite requires that

zn~ = I and Z~II = 0, for'Y. i= <5+ (n(J).
(5 (no)' J. J'

By (3) and (8) this implies that

(36)

(37)

that is, the spontaneous polarization P~II of the noth crystallite reaches its maximum p;\ t (11
0

)

(no), becoming saturated.
Substituting (34) and (37) into (10) yields

(38)

From (29), (3) and (34) we obtain

(39)

Recalling (32), we concludes that the moth crystallite should first become saturated. Sub­
stituting (38) into the above and rearranging the resulting inequalities lead to the following
upper bound for the applied electric field:

(40)

Thus, as the applied electric field ea increases and exceeds this upper bound, another

t In the case that a crystallite has two types of domains whose x-components of spontaneous polarization
are both the largest, the discussion can be proceeded in a similar manner but the presentation is much more
complicated.
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crystallite would become saturated and it must be the one whose maximal x-component of
the spontaneous polarization is the second smallest among all the crystallites. Furthermore,
one can conclude that, as the applied electric field gets stronger, more crystallites would
become saturated in the order of decreasing maximal x-component of the spontaneous
polarization. For the convenience of our presentation, we renumber the crystallites in the
order of decreasing maximal x-component of the spontaneous polarization, i.e.

P6+(n)(n) <Phn+I)(n+I), n= 1,2, ... ,N-1. (41 )

This leads to the following construction of the saturated minimizers. In the case that the
first k crystallites are saturated, one has

en =F 0, P;, = PJ+(n)(n), for I ::; n ::; k,

en = 0, Pn = p~ = d for k < n ::; N.

Using (10) and (11) we obtain

(42)

and

d=

k

He ll + I hmP;;+ 1m) (m)/8'J,', (m)
m= 1

k

"'h /ml..J m/ f,o·~ (m)
m=!

(43)

(44)

By the same discussions as that lead to (39), and noticing (41), we should have the following
inequalities:

(45)

substituting (43) into the above leads to the upper and lower bounds for the applied electric
field e" i.e.

(46)

except in the case that k = N, indicating that all the crystallites have become saturated
when the applied electric field becomes sufficiently strong. We then have a lower bound

(47)

4. A DOMAIN SWITCHING CRITERION

We turn now to consider quasi-static processes in which the mass fractions vary with
time in response to changes of applied electric field. It is evident that there is no hysteresis
in the dielectric displacement response to the applied electric field for any quasi-static
process in which only the minimizers are accessible. It is well known that the hysteretic
behavior is one of the characteristics of ferroelectric materials (Jona and Shiranc, 1962;
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Jaffe et al., 1971). This suggests that the specimen does not always attain the minimizers
when domain switching takes place. Our previous work (Huo and Jiang, 1996) indicates
that the driving force for switching iX-domain to p-domain is the excess of the Gibbs energy
associated with the iX-domain over that associated with the p-domain, i.e., g: - gp for the
nth crystallite. It is common (Abeyaratne and Knowles, 1988; Jiang, 1993; Tsai and Rosakis,
1995) to model hysteresis by introducing a threshold for the driving force and postulating
that domain switching takes place only when the driving force exceeds this threshold. One
may propose a rule that governs the rate of domain switching. Consequently, different rules
would result in distinct hysteretic responses. For simplicity of this one-dimensional analysis,
we postulate that when a driving force exceeds its threshold, the corresponding domain
switching takes place, minimizing all the driving forces, i.e.

>0, ifg:-gp > Y:/I,

AZ:/I = <0, if g: -gil < -}':/I,' iX,P = 1,2, ... ,6,

= 0, otherwise.

6

{Az:p}~./I ~ 1 mmmllzes L Ig: - gp I,
"./1= I

(48)

where Az:p denote the amount of materials in the nth crystallite being switched from the 0(­

domain to the p-domain and Y:/I' being positive, stands for the threshold of the cor­
responding driving force.

5. SOME NUMERICAL RESULTS

We now present some numerical results to illustrate the predictions of this model.
The local constitutive relation contains three material parameters, i.e., the spontaneous
polarization magnitude p-', the dielectric susceptibility constants rIa and YIn along the tetra­
gonal a-axis and the tetragonal c-axis, respectively. Their values for BaTi03 at room
temperature (Jona and Shirane, 1962) are given as follows:

(49)

where £0 = 8.854 X 1O- 12C 2jJ . m is the permittivity of the vacuum. To model domain swit­
ching, we must specify the driving force threshold Y:p for each of the crystallites. For
simplicity, we assume that it has a constant value

(50)

where ec is the so-called coercive field, i.e., the nominal strength of applied electric field
required to initiate domain switching, often adopted by crystal physicists (Jona and Shirane,
1962), and its typical value for barium titanate is about 1.0 kV/cm.

We now specify the orientations of the crystallites. As discussed previously, each
crystallite consists of six distinct types of domains whose polar directions are determined
by the orientation of the unit in the cubic lattice which the crystal possesses at temperatures
above the Curie point. Hence, we first specify the orientation of the cubic unit. For
simplicity, we assume that all the crystallites have two of their principal axes of the cubic
lattice in the same plane that contains the x axis. We refer to this plane as the x- y plane
and let the z axis perpendicular to this plane, forming a Cartesian frame X. Thus, one can
determine the orientation of the cubic unit by specifying one of the principal axes within
the x - y plane, and this leads to the following matrix representation of the orientation
tensor in the X frame:
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(COSW. -SIllWn

~)Rn = sinoWn COSWn (51 )

0

where W denotes the smaller angle among those that the two principal axes form with the
x axis. Among the six distinct types of domains, two have their polar directions per­
pendicular to the x - y plane, identified as Type 5 and Type 6, respectively, and the rest
have their polar directions within the x- y plane, identified as follows:

(52)

Correspondingly, the x-components of the spontaneous polarization intensities and the
susceptibility coefficients along the x direction are given as

(53)

This leads to the maximum and the minimum of the macroscopic spontaneous polarization

(54)

that is, J+(n) = 1 and J-(n) = 2. Noting that Type 5 and Type 6 should diminish upon
application of an electric field parallel to the x axis, sufficiently strong to switch these
domains, we exclude them from the following discussion by assuming that at the initial
configuration

...n n n n I n II 0 12 N"1 = 22 = 23 = 24 = 4' 25 = 26 = , n = , , ... , . (55)

The orientation angle WII is within the range: - n/4 < WII < n/4. From (53), one sees that
two crystallites whose orientation angles are of equal magnitude but opposite sign should
have the same constitutive behavior in this one-dimensional setting. We shall not distinguish
them by restricting W within the range: 0 ~ WII < n/4. A uniform partition of this range
leads to

WII = (1 - N: 1) ~, n = 1,2, ... ,N. (56)

We now specify h", the thickness of the crystallites with orientation angle Wn' We assume
that all the orientations are of an equal preference. Thus orientation angle W has a uniform
distribution in the present simplified configuration due to the assumption that all the
crystallites have two of their principal axes of the cubic lattice in the x - y plane. If all the
orientations in the three-dimensional space are considered to be of an equal preference, the
orientation angle should have a spherical distribution, i.e., h ll = C sin W m with C being a
normalization constant. Noting that H stands for the thickness of the specimen, we obtain

In the following, we present some numerical results on the macroscopic behavior of the
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Fig. l. The interior and saturated minimizers; (a) the dielectric displacement (d) response to the
applied electric field (e,,): (b) variation of the crystallite spontaneous polarization (p') with the
crystallite orientation angle (m); (c) dependence of the local electric field Ie) within the crystallites

upon the orientation angle.

idealized specimen described above. We consider 500 crystallites, i.e., N = 500. For com­
parison, we first consider a case that only the minimizers are accessible and the cor­
responding results are shown in Fig. I. As discussed in Section 3, the dielectric displacement
d should be within the range: - p' cos WI :( d :( p' cos WI' in the absence of applied electric
field, i.e., eo = O. This corresponds to the vertical straight line segment in Fig. I (a). For a
positive em one can find an integer k satisfying the inequalities in (46), indicating that the
first k crystallites are saturated. The similar conclusion can be drawn for a negative e,,, as
discussed in Section 3. The two curved segments in Fig. I (a) correspond, respectively, to the
ranges: 0 < e" :( 2ee and - 2ee :( e" < O. The spontaneous polarization of each crystallite
corresponding to ea = 2ee is plotted, in Fig. I (b), vs the cosine of its orientation angle w.
The horizontal straight line segment indicates that crystallites with smaller orientation angle
(j) are saturated, and hence the local electric field within these crystallites vanishes, as shown
in Fig. I (c). Note that both the polarization p and the dielectric displacement dare
normalized by the spontaneous polarization magnitude p" and that the electric field e is
normalized by the coercive field ee'

We now consider a quasi-static process with domain switching in response to an
alternating electric field: ea(t) = 2ee sin t. We used the mass fractions z: given in (55) for
the initial configuration and consequently, the specimen had no macroscopic polarization
initially. Thus, the dielectric displacement response to the applied electric field, plotted in
Fig. 2(a), is initiated from the origin. The dielectric displacement increases very slowly at
the beginning until the applied electric field gets sufficiently strong to switch the domains
according to the local switching criterion (48), and it then increases sharply due to massive
domain switching, as shown in Fig. 2(a). As the applied electric field further increases to
reach its maximum, the dielectric displacement arguments slowly and remains nonlinear
due to continuous domain switching, at a much slower rate. The dielectric displacement
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Fig. 2. Hysteretic behavior in the dielectric displacement response to the applied electric field; (a)
the first five cycles; (b) the sixteenth to twentieth cycles.

response to the applied electric field is plotted in Fig. 2(a) for the first five cycles of the
alternating field. The macroscopic response exhibits hysteresis, as expected. The discrepancy
among different cycles is due to the influence of the initial condition. The macroscopic
response repeats very well during the later cycles, and it is shown in Fig. 2(b) for the five
consecutive cycles beginning with the sixteenth. After being subjected to an alternating
electric field of magnitude large enough to induce domain switching, the specimen remains
polarized even in the absence of applied electric fields. Correspondingly, the local electric
field may not vanish although its average eo is zero, due to the misalignment of the
crystallites. To illustrate this point, we consider a state of spontaneous polarization that
corresponds to the point marked with letter A in Fig. 2(b) and we plot, in Fig. 3(a),
the electric field within each of the crystallites vs the cosine of its orientation angle w.
Correspondingly, the spontaneous polarization for each of the crystallites is shown in Fig.
3(b). Corresponding to the point marked with letter B in Fig. 2(b) where the applied electric
field reaches its maximum 2en the electric field and the spontaneous polarization for every
crystallite are plotted, respectively, in Figs 4(a) and (b), vs the cosine of its orientation
angle w. At this point, the local electric field is close to zero within those crystallites oriented
close to the x axis (with a small w), indicating that these crystallites are nearly saturated.
Consequently, the rest of the crystallites are subjected to a local electric field of magnitude
substantially larger than that of the applied electric field. This suggests that misalignment
of crystallites can cause strong electric field concentration. In a real ferroelectric system,
electric field concentration is usually linked with stress concentration due to the strong
electromechanical coupling effect (Zhang and Jiang, 1995). We are unable to explore this
issue with the present example because of the limitation of the one-dimensional setting. An
attempt to analyze an electro-mechanically coupled example in higher dimensions would
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Fig. 3. A state of spontaneous polarization; (a) non-vanishing local electric field within crystallites
in the absence of applied electric fields, due to crystallite orientation mismatch; (b) variation of

crystallite spontaneous polarization due to orientation mismatch.
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necessarily involve a large amount of computational work. We are currently implementing
this model with a numerical scheme in order to simulate the experiments with more realistic
systems.
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